Tutorial : Simulations with Genesis using hsolve

Hugo Cornelis’ Erik De Schutter?
Laboratory of Laboratory of
Theoretical Neurobiology Theoretical Neurobiology
University of Antwerp University of Antwerp

Antwerp, November 15, 2002

'hugo@bbf.uia.ac.be
2erik@bbf.uia.ac.be

Contents

I Towards basic use of hsolve

1 From Numerical Theory to Simulation Practice

1.1 Numerical Preliminaries e

1.1.1 Taylorseries o i e

1.1.2 Numerical Schemes e
1.2 Neuroscience Equations Lo oL L

1.2.1 A Single compartment Lo

1.2.2 Multiple compartments

2 Introducing Hsolve for Single Cells

2.1 Basic Use: A short overview e e
2.2 The chanmode Field: Modes of Operation
2.3 Tabulated Calculations o e e e
2.4 Interpreting the Mode of Operation.
2.5 Exercise: Speed Comparison e
2.6 Communication with Other Elements
2.7 A Practical Example 1: Hsolve and the efield Object
2.8 A Practical Example 2: Experimental Setups with Hsolve

2.8.1 Chronology of Commands e

2.8.2 Setup of Experiments e

3 Networks of Cells

3.1 Imtroduction e e e e e
3.2 The DUPLICATE Action i i i e e e e e e e e e e e

IT Some Useful Tricks with Hsolve

4 Beyond Simple Use

4.1 Advanced Actions e e e e e e e e e
4.1.1 Setting/Getting Fields for Individual Elements
4.1.2 Setting all Computed Fields at the Same Time

4.2 Advanced Fields e e
4.2.1 calcmode i e
4.2.2 storemode e e
423 mno_elminfo
424 outclock e
4.2.5 Other Fields

IIT Intrinsics and Technicalities

5 Synchan - hsolve coordination

51 A word about events L. e e e e e
5.2 Implementation L e e e e e
5.2.1 Synchanevent handling
5.2.2 New Incoming Events o

[y

Y UTUTNNNN

10
12
12
13
13
15
16
16
17

20
20
20

24

25
25
25
26
26
26
26
27
27
27

CONTENTS 2

6 Byte-codes 32
6.1 Compilation L. e e e e 32
6.1.1 DataModel e 32

6.2 Hsolve as a Virtual Machine 33
6.2.1 Solution of The Cable Equation. 34

6.2.2 Solution of Conductance Equations. 35

Abstract

This tutorial is designed for the advanced Genesis user interested in better understanding how the
Hines-solver (hsolve) is implemented in Genesis. We will first review some equations fundamental to
many neuro-biological models and illustrate how these equations are solved numerically. We will then
focus on the implicit solutions to these equations using hsolve and show how hsolve’s configuration
relates to the numerical side. After a survey on the basic use of hsolve and examples on how to
interface hsolve to other Genesis elements, we show a number of useful tricks that are impossible
without a global computation engine as hsolve. Finally we conclude with the more technical sides
like hsolve - synchan interoperability via discrete events and disassembling byte codes that represent
numerical equations.

Part 1

Towards basic use of hsolve

Chapter 1

From Numerical Theory to
Simulation Practice

1.1 Numerical Preliminaries

In this first section we will shortly introduce some fundamental concepts without going to deep into
the mathematical details. This will help you understand how hsolve relates to the software design of
Genesis and why it is superior when compared to the other objects.

The basic problem can be stated as follows :

1. A biological model — what we want to compute — is a set of coupled biological components.

2. The time-dependent behavior of a biological component is described with a (set of) differential
equation(s).

3. A single differential equation describes a rate of change of a variable.

To solve a system of differential equations that describes the behavior of a biological system, we use
a numerical method. The methods about to be introduced are all based on the Taylor series.

1.1.1 Taylor series

If we denote with 3(™)(t) the function value at point ¢ of the n’the derivative of a function y, then
the Taylor series of a continuous function y at point ¢ is given by :

1 1 1
y(t +h) = y(t) + hyM (t) + ah?y(?) (t) + ih3y<3>(t) +ot mh"y<"> () +--- (1.1)

Some remarks about this expansion :

1. h can be any element of R, such that a function is completely defined by its Taylor expansion at
any single point of its domain. (Full knowledge of the function at a single point determines the
full function at all points).

2. The successive terms of the Taylor series are decreasing in magnitude in an exponential way.

3. We can truncate a Taylor series to approximate the original function. This divides the Taylor
series in two separate series : the numerical scheme and the error series. The error after truncation
is mainly dependent on the first term of the error series.

1.1.2 Numerical Schemes

If y(0) is known, y(1) can be calculated by evaluating the Taylor series (1.1) with h set to 1. Since
the Taylor series is an infinite sum, you have to truncate the series after N terms, so you introduce
an error that scales with the magnitude of the N + 1’th term. This error is called the local truncation
error. Tt scales with A%,

CHAPTER 1. FROM NUMERICAL THEORY TO SIMULATION PRACTICE 3

Successive application of the series on the obtained results, gives a sequence of numbers
(y(0),y(h),y(2h...). If h is considered a time step, this simple scheme allows you to approximate
any continuous function or — as we use to call it — simulation of the variable described by that function.

The accumulation of the local truncation errors in such an approximation or simulation is called
the global truncation error. To obtain more accuracy in the results, it is obvious that A should be made
smaller. This however results in more steps needed for the same simulated time. If you divide h by two
for example, the number of steps needed to obtain the same simulated time is multiplied by two with
more accumulation of local error as a result. In general the global truncation error is always at most
one order of magnitude larger than the local truncation error.

Forward-Euler The forward-Euler method truncates the Taylor series after two terms :

y(t+h) = y(t) + by (@) (1.2)

Assuming that the value at point ¢ is correct, the forward-Euler method computes the value at point
t + h with a local error that scales with h? (see the first term of the error series). The forward-Euler
method always gives overshoots on the original curve.

A

Figure 1.1: Graphical illustration of the forward-Euler method for an exponential like curve. Starting
at point 1, the tangent of the curve is taken and linearly extrapolated to obtain point 2. There again
the same procedure is used to obtain point 3. Note that point 2 lies on curve 2 and point three lies on
curve 3, both of which are offset against the original curve.

Backward-Euler The backward-Euler method also truncates the Taylor series after two terms. The
difference is that the derivative is evaluated at point ¢ + h instead of at point .

y(t + k) =y(t) + hyM (t+ h) (1.3)

Assuming that the value at point ¢ is correct, the backward-Euler method computes the value at
point ¢ + A with a local truncation error that scales with h2. The backward-Euler method always gives
undershoots on the original curve.

Normally we do not know the derivative at point ¢+ h, although we need it to compute the function
value at point t+ h. In practice this requires a rearrangement of the equation. We call such a numerical
scheme an implicit numerical scheme. For most equations implicit schemes are more stable than explicit
schemes because of the undershoots.

CHAPTER 1. FROM NUMERICAL THEORY TO SIMULATION PRACTICE 4

A

Figure 1.2: Graphical illustration of the backward-Euler method. To obtain point 2 from point 1, we
take the derivative at point 2 and extrapolate it at point 1. To obtain point 3 starting at point 2, we
do the same : take the derivative at point 3 and extrapolate it at point 2.

Explicit Implicit
First Order Forward-Euler, exponential Euler Backward-Euler
Second Order 2nd-Order Runge-Kutta Trapezoidal rule
Higher Order | Adams-Bashforth, Runge-Kutta-Fehlberg | Adams-Moulton, Gear

Table 1.1: The numerical schemes of interest. Not all of them are mentioned in the text, see [8] and [6]
for more information.

Exponential Euler The main idea behind the exponential Euler rule is that many biological pro-
cesses are governed by an exponential decay function. Being the default numerical method in Genesis,
it is shortly reviewed for the sake of completeness. For an equation of the form :

dy

— =A-B 14
3t y (1.4)
its scheme is given by :
_Bat | A —BAt¢
y(t+ h) =y(t)e + E(l —e) (1.5)

The Trapezoidal Rule The trapezoidal rule is a simple average of the forward-Euler and backward-
Euler schemes. It can be shown that the local truncation error scales with A3.

h- (M (@) +yD(t + 1)
2

For ordinary differential equations, the trapezoidal rule is an application of the 8 method, which
itself is a special case of a second-order Runge-Kutta method. For more details see [6].

y(t+h) =y(t) + (1.6)

CHAPTER 1. FROM NUMERICAL THEORY TO SIMULATION PRACTICE 5

A

Figure 1.3: Graphical illustration of the trapezoidal method. Starting at point 1, we get point 2 by
taking the derivatives at point 1 and point 2, and extrapolating their average in point 1.

1.2 Neuroscience Equations

The membrane potential (V') in a single branch of a neuron is described by the one dimensional
cable equation :

%% R—a% =CmE+IHH (17)

If we consider the axial resistance and dendritic diameter constant, this is simplified to a cylindrical
cable equation :

1 0 <7ra28V> ov

a 0%V oV
— =Cp—— + 1 .
2R, 0x? Cm ot Hi (18)

In the the Hodgkin-Huxley formalism, the current is defined as:

I = gNam®h(V — Ena) + ggn*(V — Ex) + g.(V — Ev) (1.9)

m, h and n are voltage and time dependent variables between 0 and 1, each satisfying a simple
exponential curve, described by :

= an(V) = (@n(V) +Bu(V)) - (110

1.2.1 A Single compartment

In the one dimensional cable equation the membrane potential is dependent on time as well as
space. Both these axes can be discretized independently. We first assume that the cell is iso-potential
(same membrane potential at all places) which eliminates the spatial dependence (if you omit the
Hodgkin-Huxley conductances, this also leads to integrate-and-fire models).

Since the cell is assumed to be iso-potential, the cable equation reduces to a simple exponential
decay function. The question remains how to fill in the Hodgkin-Huxley current while maintaining the
second-order accuracy of the trapezoidal rule. The following trickery is used for this:

CHAPTER 1. FROM NUMERICAL THEORY TO SIMULATION PRACTICE 6

y(t+h)

1 1 1
y(t) + hy™M(t) + §h2y(2)(t) + §h3y(3))+ + mh”y(”)) +--
1 1 1
y(t—h) = y(t)—hyM (1) + §h2y(2)(t) - §h3y(3)) +--+ (‘U"mh"y(") @) +---

Subtract and regroup :

2 2
ylt+h)—y{t—h) = 2hy(1)(t)+§h3y(3)(t)+---+ 2—n!h2"y(2”)(t) -
2hy M ()

Q

Or if you rewrite :

hy® () ~ y(t —h) ; y(t+h)
This equation has a local truncation error of third order and can be used to fill in the membrane
potential in the Hodgkin-Huxley equations and vice versa in the following way : we assume that y(¢+ h)
is the unknown gate value we are searching, while y(t — h) is the previous gate value and y()(t) is the
rate of change for the gate value that can be calculated given the membrane potential at time ¢t. Under
the assumptions that y(¢t — h) and the membrane potential are second-order correct, the result of this
calculation — the new values for the gates — will be second-order correct too. Then the same method
can be used to compute the membrane potential at time point y(¢ + 2h) given the membrane potential
at time point y(t) and the gate values at time point y(¢ + h).
It is important to see that the second-order accuracy is maintained only when the membrane po-
tential and the Hodgkin-Huxley equations are computed at different time points.

(1.11)

NOTE : If concentration pools are represented in a model of a neuron, they should be evaluated
at the same time steps as the membrane potential.

Figure 1.4: Mid step evaluation of membrane potential and Hodgkin-Huxley equations. To calculate
the conductance at time point 2, we need the membrane potential at time point 1. To calculate the
membrane potential at time point 3, we need the conductance at time point 2. The membrane potential
at time point 2 is never computed, neither the conductance at time point 3.

1.2.2 Multiple compartments

In the trapezoidal scheme the following rule is used to spatially discretize the cylindrical cable
equation :

CHAPTER 1. FROM NUMERICAL THEORY TO SIMULATION PRACTICE 7

PV (x,t) Va—nz(t) = 2Ve(t) + Vaoyas(t)
I (Azx)?

This scheme splits up a single cable in multiple compartments and is second-order accurate in space
if the discretization length is kept constant (use the Taylor series to prove this : take the sum of a Taylor
expansion for V(z + Az) and V(z — Az) and see what happens). It is used by most popular neuro-
biological simulation packages to discretize dendritic trees (however with a non constant discretization
length, which makes the rule first order accurate).

If this scheme is combined with an explicit numerical scheme like the exponential Euler, all the
resulting equations are self contained and can be solved in isolation. However if this scheme is combined
with an implicit numerical scheme like the backward-Euler, the numerator of the right-hand side couples
the neighboring compartments to each other. it gives rise to a system of coupled finite-difference
equations. If you choose the trapezoidal rule for time discretization, the method is called a Crank-
Nicolson. For a linear cable the coefficients of this system can be arranged in a tridiagonal matrix
such that it can be solved in linear time. For branched morphologies the matrix is still symmetric (not
tridiagonal however), and it can still be solved in linear time. The arrangement of the equations is done
with Hines numbering (a special kind of minimum degree algorithm, see[7]), and the solution can be
obtained with Gaussian elimination without pivoting[8, 7]. This operation scales with the number of
equations in the system and as such it can be considered to be a fast solution for this system. Figure
1.2.2 gives an example morphology with the corresponding matrix structure. The text below the figure
gives more explanation about how to solve the system of equations.

(1.12)

NOTE : Without extensions these schemes cannot be applied to gap junctions, since gap junctions
give rise to looped electrical circuits such that the matrix containing the cable equations, cannot
be solved with Gaussian elimination without pivoting.

b a 0000O0O0O0O

a b a0000000 *0 3”
0 adb00O0a0O00 ~ e
000%ba000O00 N, F
0 00 a b a 0000 %
0000abaoc oo VEFA=VE 6

0 0a 00 a c a 00 Z
000000 adbdao 8
0000000 aatba &
000000 O0O0 a b .

Figure 1.5: Resulting matrix structure after applying an implicit numerical scheme to the shown mor-
phology. The numbers in the figure correspond to the rows in the matrix and come from one possible
(Hines) numbering scheme[7]. The system can easily be solved by sweeping through the equations
twice : the first sweep eliminates all the coefficients below the main diagonal and results in the de-
coupling of the last equation such that it can be solved in isolation. Then the second sweep starts
by substituting the last unknown in the second last equation, such that this equation can be solved
too. Continuing this process upwards solves the complete system. (Application of an explicit numerical
scheme to this morphology would result in a matrix with only coefficients on the main diagonal. Of
course in such a system all equations can be solved in isolation.)

Chapter 2

Introducing Hsolve for Single Cells

If you create a set of coupled compartments with Genesis, you already have discretized your neuron
so we will not consider spatial discretization any further. In this section we introduce the Genesis
’hsolve’ object. To implement the time discretization, this object implements some of the previously
introduced numerical methods and combinations thereof.

So far we have identified the backward-Euler and the Crank-Nicolson rules as implicit finite-
difference schemes. The explicit schemes we encountered are the exponential Euler and the forward-
Euler. Since we have to solve two types of equations (cable equation and Hodgkin-Huxley equations),
these different time-discretization techniques can be applied to the different equations and combined
at will :

1. Solve all equations with an explicit method (forward-Euler or exponential-Euler). This isolates all
compartments to single equations that can be solved independently. Being the default numerical
methodology in Genesis, you are supposed to be familiar with it. See [2] for more details.

2. Solve the cable equation with an explicit method, solve the Hodgkin-Huxley channel equations
with an implicit method. This is rather uncommon and will not be treated either.

3. Solve the cable equation with an implicit method, solve the Hodgkin-Huxley channel equations
with an explicit method at the same time points.

4. Solve the cable equation with an implicit method and solve the Hodgkin-Huxley channel equations
with an implicit method at halve time points.

The implicit solver of Genesis, ’hsolve’, implements the last two points in the above enumeration.
We cover the use of hsolve in the following sections.

2.1 Basic Use: A short overview

Since hsolve is only a computation engine, it has no knowledge of your model (number of equations,
morphology, ...). The first step in using hsolve is always a step of model construction without using
hsolve at all. The next step is creating and configuring hsolve such that it knows what (part of) the
model to compute and how to compute it. Then you inform hsolve that everything is in place and it
may do its internal initialization. After the usual 'reset’; you can start the simulation.

If we want to compute two coupled compartments with Hodgkin-Huxley channels, this may look
like the following :

1. Write your scripts as if you are not using hsolve at all :
(a) Set the simulation clock(s).

genesis > setclock 0 0.0000030

NOTE : Never forget to set the main simulation clock. If you do not do so, hsolve
will be confused and can produce unexpected results.

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS 9

(b) Create the model you want to simulate: create all the elements, set all their fields and
create messages between them. In this example we create two coupled compartments each
containing a fast sodium conductance and a delayed rectifier conductance. For hsolve it is
important that these channels are below the compartments they belong to in the Genesis
element hierarchy :

genesis > create neutral /cell
genesis > ce /cell
genesis > create compartment cl
genesis > setfield c1 Ra 0.5 Rm 10 Cm 0.01 Em -0.065
genesis > copy /library/NaF cl/NaF
genesis > addmsg cl c1/NaF VOLTAGE Vm ; addmsg c1/NaF c1 CHANNEL Gk Ek
genesis > copy /library/Kdr c1l/Kdr
genesis > addmsg cl1 c1/Kdr VOLTAGE Vm ; addmsg c1/Kdr cl CHANNEL Gk Ek
genesis > copy cl c2
>

genesis > addmsg cl c2 AXTAL Vm ; addmsg c2 cl RAXIAL Ra Vm

NOTE : In this example all elements use the same simulation clock i.e. clock 0. When
you want to use hsolve on elements that use different simulations clocks, reconfigure
the model such that they all use the same simulation clock. Afterwards migrate to
hsolve.

2. Create and configure hsolve:

(a) Create hsolve element at the right location.

genesis > ce /cell
genesis > create hsolve solver

(b) Set the ’path’ field with a wild card to match the compartments to be computed. The *path’
field is always specified relative to the hsolve element (not to the current working element). In
this example the full path specification is ”/cell/solver/../##[][TYPE=compartment]”,
which is the same as ”/cell/##[][TYPE=compartment]”. Configure hsolve further by
setting other fields like chanmode and calcmode if needed (it is not needed in this example).
We will cover these fields in one of the next sections.

genesis > setfield solver path "../##[] [TYPE=compartment]"

(c) Set the numerical method to use for the computations done by hsolve (normally one always
uses Crank-Nicolson, i.e. method 11).

genesis > setmethod solver 11

NOTE : Never forget to set the method to backward-Euler (method 10) or Crank-
Nicolson (method 11). If you do not do so, hsolve will be confused and can produce
unexpected results.

3. Initialize hsolve:

(a) Call the SETUP action on hsolve. This allows hsolve to do its internal initialization. Basi-
cally hsolve will examine the structure of the model and compile it into an internal efficient
representation. All operations up till this step may only be performed once.

genesis > call solver SETUP

(b) Do other things of interest to your simulation (don’t touch the elements that will be computed
by hsolwe).

genesis > ...

(¢) Call the RESET action on hsolve (this is automatically done by the Genesis 'reset’ com-
mand). This will transfer and convert all initial values into hsolve’s internal data struc-
tures. This step can be repeated as many times as needed since it does not alter the model’s
structure.

genesis > reset

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS 10

4. Do the simulation (’step’ command).
genesis > step 1 -time

That’s it, here is again the full code :

genesis > create neutral /cell

genesis > ce /cell

genesis > create compartment cl -initVm

genesis > setfield cl1 Ra 0.5 Rm 10 Cm 0.01 Em -0.065

genesis > copy /library/NaF c1/NaF

genesis > addmsg cl c1/NaF VOLTAGE Vm ; addmsg cl/NaF cl1 CHANNEL Gk Ek
genesis > copy /library/Kdr c1l/Kdr

genesis > addmsg cl c1/Kdr VOLTAGE Vm ; addmsg c1/Kdr cl CHANNEL Gk Ek
genesis > copy cl c2

genesis > addmsg cl c2 AXIAL Vm ; addmsg c2 cl1 RAXIAL Ra Vm

genesis > ce /cell

genesis > create hsolve solver

genesis > setfield solver path "../##[] [TYPE=compartment]"

genesis > setmethod solver 11

genesis > call solver SETUP

genesis >

genesis > reset

genesis > step 1 -time

NOTE : Depending on the circumstances, the hsolve element can be created automatically. An
example is the use of the *~hsolve’ option of the ’readcell’ command in which case the path field
is also set to point to the compartments of the cell that is being read. Currently an annoying bug
in the readcell code obliges you to use absolute pathnames for the created elements if you use this
option.

NOTE : In the example given above all elements use clock zero. It must be noted that hsolve
computes all variables using the same clock (so the same time step). If you only use the elements
that act as a model for hsolve, you have the flexibility to use different clocks for different elements
(so different time steps for different elements).

It is useful to discuss how Genesis deals with hsolve. Without hsolve, all elements you create, are
responsible for their own calculations. A compartment for example will compute a (cylindrical) cable
equation using the exponential-Euler rule and has some facilities to communicate certain variables to
or from other elements (via the Genesis message system). When using hsolve however, hsolve does
the computations as shown in figure 2.1. Depending on the configuration of hsolve — something that
will be discussed in the next section — hsolve is able to use the facilities of the original objects to
communicate with other elements, but it is also able to use its own internally optimized communication
facilities.

2.2 The chanmode Field : Modes of Operation

In the previous example we have seen a basic example of how to setup hsolve and configure it to
simulate a model represented by two compartments. How is this related to the mathematics we discussed
earlier on ? Which numerical scheme was used for the cable equation and which numerical scheme was
used for channels ? These questions are answered by inspecting the chanmode field. Basically you
have to make a major distinction between the lower chanmodes (chanmode 0 and 1) and the higher
chanmodes (chanmode 2 to 5). The lower chanmodes are modes intended for compatibility with other
Genesis objects and they are slow compared to the higher chanmodes. Hsolve will automatically update
all the computed fields in the original elements, such as to create the illusion that the original elements
still perform their own computations. The updated fields are then available for plotting or for other
elements to do additional calculations.

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS 11

1. chanmode 0 (default) : hsolve computes the cable equation only (i.e. hsolve does the compu-
tations of the compartments). All the other elements (Hodgkin-Huxley channels, concentration
elements) still do their own calculations. Since hsolve does not compute the channel equations,
the channel rates are updated at time points independent of update times of the membrane po-
tential. This loss of second-order accuracy results in the penalty of having to use a small time
step.

To communicate variables to/from other elements, hsolve uses the message system of Genesis.
This makes the chanmode 0 the most compatible mode of operation and it is recommended for
people that have developed their own set of custom objects.

2. chanmode 1 : hsolve computes the cable equations and the tabchannel elements inside the com-
partments with a staggered time grid. This results in some extra performance but is not com-
pletely compatible with all types of setup. More precisely, incoming and outgoing messages for
the tabulated channels are ignored, except for the messages that link the channels to the com-
partments (CHANNEL, VOLTAGE), single messages coming from a nernst element (EK) and a single
message that is linked with the Z gate (CONCEN). If your model contains only tabulated channels,
all conductances will be calculated by hsolve at time points between the updates of the mem-
brane potential. This maintains the second-order accuracy and thus you can use a larger time
step.

To use chanmode 1 in the previous example, you configure hsolve with the following command :

genesis > setfield solver path "../##[] [TYPE=compartment]" chanmode 1

NOTE : The compartmental Im field is only computed by hsolve running in chanmode 0 or 1 if
you turn on the field 'computeIm’. Calculation of the Im field incurs a small performance penalty.

When using the higher chanmodes, hsolve will compile all elements that belong to your model to
byte-codes. During the simulation these byte-codes are emulated which results in a high performance
(the higher chanmodes can be 5-10 times faster than the lower chanmodes, depending on the model
structure). To be able to compile an element into byte-codes, hsolve must be aware of the element
type (the Genesis object) and its computations. The objects hsolve is able to compile to byte-codes,
are documented in the Genesis manuals.

The higher chanmodes all share the property that hsolve computes all the elements present in your
model on the staggered time grid, so this guarantees second-order accuracy under all circumstances. A
single time step in the simulation will compute the membrane potential at the simulated time after an
update of the conductance at an intermediate time point.

In most cases the original elements’ fields will not be updated. For hsolve the elements only serve
as a description of the model to be computed, so we call these elements modeling elements. To inspect
calculated values, they have to be fetched with the findsolvefield command. We will show examples
of the use of this command shortly. The difference between the different chanmodes lies in the fact that
some fields might not be computed and are not accessible — even with the findsolvefield command
— as explained in the following :

1. chanmode 2: The compartmental voltage is stored in the respective fields of the original com-
partments. Other fields like channel gates are accessible via the findsolvefield command. The
channel parameters Gk, Ik, Ek and the compartmental membrane current Im are not stored by
hsolve. At every time step of the simulation, hsolve will update the membrane potential of the
original compartments (that serve as the model) with the computed membrane potential. If you
are only interested in membrane potentials, this mode will be handy. Outgoing messages to non
computed elements that are created before the SETUP call are not supported in this mode.

2. chanmode 3 : This is exactly the same as chanmode 2, except that the compartments’ Vm field is
not updated. The membrane potential is only accessible via the findsolvefield command.

3. chanmode 4: As in chanmode 3, none of the fields of the modeling elements will be updated,
but in this chanmode all fields are accessible with the findsolvefield command (including the
channel parameters Gk, Ik, Ek and the compartmental Im field).

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS 12

4. chanmode 5 : This chanmode is as chanmode 4 (all fields are stored), but the channel parameters
Gk, Ik and Ek and the compartmental membrane current Im are calculated as relative values
(normalized to the compartment surface).

2.3 Tabulated Calculations

Hsolve puts up a number of restrictions for the tables of the tabulated elements. These are sum-
marized below.

The calcmode field. Genesis makes extensive use of precomputed tables to model conductance that
depend on the membrane potential. The tabchannel element is an example. The tables are a simple
discretization along the V-axis of the function they model, so they ’export’ a set of (V;,y;) tuples,
Vi=Vo+i-AV, 0 < i < N. Since the membrane potential V is a computed variable, there is no
guarantee that it will be equal to one of the V;’s at any point in simulation time. The tabulated elements
in Genesis know about two basic modes of calculating a value y for a given value V :

1. Truncation : for a given value V, V; <V < V44, the value y; is returned. Since the value y; is
directly stored in the table, no additional calculations have to be performed.

2. Linear interpolation : for a given value V, V; <V < V4, the valuey = y; + (V = V;) - %
is returned. The value y is the result of a linear interpolation between two tuples stored in the
table.

The distinction between these two modes of operation is made by the calc_mode field. If this field
is set to 1, linear interpolation is used, if the field is set to 0, truncation is used.

For most tabulated elements of genesis the calc mode field is found in the interpol structs that
reside in the element fields. However hsolve has its own calcmode field — note the small difference in
name — which is applied to all tabulated calculations. The granularity provided by the Genesis elements
is much higher than provided by hsolve. That is why you always have to set the field manually.

NOTE : Never forget to set the calcmode field and to check if it is equal to the calculation mode
of all tabulated elements. If you don’t, your results will be almost right, but not exactly.

The Table Properties. Besides the restriction that all tabulated calculations are done in the same
calculation mode, hsolve also demands that all tables of the dimension are of the same type. This
means that they must have the same size and the same discretization step. The sizes of the tables
can be queried by inspecting the xdivs and ydivs fields. The discretization step can be queried by
inspection of the fields invdx and invdy. Hsolve will give an appropriate error message if there are
conflicts between the properties of different tables it has to use.

2.4 Interpreting the Mode of Operation

Suppose you are inspecting a simulation, to see what it does and how it does it. You know hsolve
is being used in the simulation, but you do not know where in the scripts it is configured. This short
section will help you out. The first step is to locate all hsolve elements :

genesis > echo {el /##[][TYPE=hsolvel}
/purkinje

Then for every hsolve element reported, you inspect the chanmode, calcmode and path field.

genesis > showfield /purkinje path chanmode calcmode
[/purkinje]

path ./##[] [TYPE=compartment]
chanmode =4

calcmode =1

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS 13

The path field tells you that all compartments below the hsolve element have been taken over
by /purkinje. The chanmode is four which means that also all intracellular mechanisms within the
compartments will be computed by hsolve. Finally the calcmode tells that all tables are used with
linear interpolation to compute results.

The numerical method that hsolve uses for the cable equations and the equations of intracellular
mechanisms is found with the following command :

genesis > showfield /purkinje object->method
[/purkinje]
object->method =11

So in this case Crank-Nicolson is used to update the variables.

2.5 Exercise: Speed Comparison

The numerical advantage of implicit methods is that you can use a much larger time step in order to
compute the same neuronal model (this is due to the stiffness of the system, see [8]). In order to examine
the dependence of the results on the time step you can run a simulation with and without hsolve while
varying the time step. However In this exercise we are concerned about something completely different :
hsolve optimizes the calculations such that it runs faster than the original compartments. The speed
advantage by using hsolve is given in table 2.1.

no Xodus output

original 66.30 | 66.44 | 66.41
chanmode 0 | 56.79 | 56.76 | 56.81
chanmode 1 | 40.26 | 40.27 | 40.34
chanmode 2 | 15.45 | 15.27 | 15.31
chanmode 3 | 14.02 | 13.90 | 13.90
chanmode 4 | 16.47 | 15.96 | 16.05
chanmode 5 | 16.99 | 16.55 | 16.49

Xodus output

original 66.55 | 66.60 | 66.63
chanmode 0 | 57.14 | 57.05 | 57.05
chanmode 1 | 40.60 | 40.67 | 40.64
chanmode 2 | 15.29 | 15.51 | 15.41
chanmode 3 | 14.08 | 14.08 | 14.20
chanmode 4 | 16.34 | 16.32 | 16.36
chanmode 5 | 16.63 | 16.85 | 16.81

Table 2.1: Simulating a Purkinje cell containing ~4000 compartments without and with hsolve in the
different chanmodes. The table lists two times three trials: the first set of trials is done without any
output. The second set is obtained while plotting the membrane potential of the soma. All numbers
give the total CPU time needed to simulate 1000 steps, all simulations used the same time step.

2.6 Communication with Other Elements

Knowing how to use hsolve can only be interesting when you also know how to setup experiments
and how to save the output. Interfacing hsolve to other elements is not always trivial and deserves a
special paragraph of attention.

A distinction can again be made between the lower and the higher chanmodes. When using the
lower chanmodes — the ’compatibility’ chanmodes — everything behaves almost as without hsolve. In
chanmode 0, under no circumstance you will experience problems when interfacing hsolve to other
objects. Incoming and outgoing messages that have been created before the SETUP action call are
handled automatically. In chanmode 1, hsolve puts severe restrictions on the messages that can be
send to the tabulated channels. Since hsolve will not always give an appropriate error message for

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS 14

messages that are handled or that are ignored, it is recommended not to use chanmode 1 unless you
are sure that you do not have any tabulated channels with messages that are not handled by hsolve
(these messages include DOMAINCONC and ADD_GBAR).

The higher chanmodes are the more interesting modes of operation because of their excellent per-
formance. We will concentrate on them from now on and explain how to use them correctly.

As already said, when using the higher chanmodes, hsolve compiles your model into optimized byte-
codes. During the simulation these byte-codes are interpreted at each time step. They instruct hsolve
to compute the conductances and evaluate the cable equations. To be able to compile a model into
byte-codes, hsolve must know the object type. The object types hsolve is currently supporting are
compartment, tabchannel, tab2Dchannel, tabcurrent, Ca_concen, concpool, difshell, taupump,
mmpump, hillpump, fixbuffer, difbuffer, dif2buffer, fura2, nernst, ghk, channelC2, channelC3,
synchan, synchan2, Mg_block, spikegen, neutral.

When using these objects in a model, be sure to create them beneath the subtree of the compart-
ments they reside in. Then you link them together with messages as usual. Afterwards you create
hsolve, set the path field (point it to the compartments only), and perform a SETUP and RESET call. If
anything is wrong with the model structure, e.g. if a message incoming to a channel is not handled by
hsolve, hsolve will give an appropriate error message. If all is right, hsolve is setup correctly. This
means that (1) all computations normally done by the modeling elements, are now done by hsolve in
a more efficient way and (2) the message passing between these elements is done by hsolve’s internal
communication facilities. This is all made transparent for a user except that the computed values
are not stored anymore in the original elements, but they are stored in hsolve’s internal data arrays.
How to communicate with these data arrays will be explained shortly.

NOTE : Hsolve implicitly assumes that you are not doing fancy things like sending an AXIAL
message from a channel to a compartment. Genesis’s flexibility allows you to construct absurd and
unrealistic models. It could be that you do not get any error message if you try to have hsolve
compute such models.

Messages from and to external objects There are two methods to deal with the fields that
hsolve computes. The first one is via regular Genesis messages. These messages must be created
on the modeling elements before the SETUP call. During byte-code compilation, hsolve will examine
all encountered elements for incoming and outgoing messages and remember to handle these messages
during simulation time. If hsolve cannot handle such a message, it will give a warning message in the
terminal.

The ’findsolvefield’ command The ’findsolvefield’ command gives access to hsolve’s internal
data structures. Hsolve only keeps these data structures after it has examined the structure and stored
the properties of the model it has to compute. This means that the findsolvefield command can
only be used after a valid SETUP and RESET call. The command has the following syntax :

genesis > findsolvefield <hsolve-element> <computed-element> <computed-field>

The following code shows both approaches at the same time : two messages are setup to a graph,
plotting both the membrane potential of the same compartment. If you run this example, the two
plots will be completely overlapping. To be able to run this demo, you must have access to the tutorial
scripts that come alone with this document.

genesis
genesis

setfield ~ xmax 2 ymin -0.1 ymax 0.05
xshow /out

genesis > include ht_compartments.g

genesis > make_compartments

genesis > setclock 0 0.000010

genesis > readcell main.p /main -hsolve

genesis > setmethod main 11

genesis > setfield main chanmode 4

genesis > create xform /out [200,50,300,300]

genesis > create xgraph /out/voltage [0,0,100%,100%]
>
>

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS 15

genesis > addmsg /main/main /out/voltage PLOT Vm *cmp *red

genesis > call main SETUP

genesis > addmsg /main /out/voltage \

genesis > PLOT {findsolvefield /main /main/main Vm} *fsf *blue
genesis > reset

As you can notice the hsolve element is created with the ~hsolve option of the readcell command.
The numerical method is set to 11 (Crank-Nicolson) and the chanmode is set to 4 (hsolve integrates
compartments i.e. cable equations, and channels on a staggered time grid). The graphics are created
(see the Xodus documentation for details) and messages are created between the fields of interest and
the graphical output widgets. As you see, before the SETUP call a regular message from a compartment
is created. After the SETUP call, findsolvefield is used to create the same message from the hsolve
element.

NOTE : Internally hsolve restores all computed fields in the original element for every element
that has a single outgoing messages during the SETUP call. This incurs a small performance penalty.
For this reason it is better to use the findsolvefield command whenever possible.

NOTE : The implementation of findsolvefield uses a small name space of elements that is
private to hsolve. Since hsolve looks at all elements from the viewpoint of numerical solution,
this name space is flattened out. An example of this flattened name space are compartments that
are contained within another compartment in the Genesis element name space. From solution
viewpoint, all compartments are equally important for the solution matrix so such a hierarchical
arrangement must be addressed without any prefix when using findsolvefield.

2.7 A Practical Example 1: Hsolve and the efield Object

As a first practical example, we show how to use hsolve for extracellular field recordings. The
efield object represents an extracellular field potential recording electrode that uses current sources
and their distance from the electrode site to calculate the field potential. The current sources are the
compartments that are computed by hsolve. If the RESET action is called on the efield object, it
calculates the distances from the compartments to the electrode, and fills in the distance from the
source element, that is sending the message, to the destination element, the efield element.

1. Create a model of a multi-compartment cell.

2. Create an efield element and give it a sensible position. Create messages between the compart-
ments and the efield element to have it calculate the extracellular field potential.

3. Create and setup hsolve.
4. Reset the simulation and check the simulation schedule with the showsched command.

5. Inspect the distances between the compartments and the recording electrode. These distances
have been calculated by the efield element because of the reset.

6. Run a simulation for some time, check that the efield is indeed calculating the field potential.

NOTE : In chanmode 4 hsolve calculates the capacitive current for the field Im, not the total
membrane current. You can use chanmode 4 in this example, but the results will not be what
you expect. Nevertheless it is a useful exercise, also check out what changing from chanmode 0 to
chanmode 4 does to the simulation schedule.

NOTE : The scripts for this example allow to switch off hsolve and use the compartments to
do the computations. What happens if you naively switch from hsolve to the compartments and
why ?

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS 16

2.8 A Practical Example 2 : Experimental Setups with Hsolve

In this second example we will show how to use hsolve in combination with experimental setups.
The different experimental setups we will examine are :

1. Current injection.

2. Synchronous activation of predefined synaptic channels.

As output we will use the Xodus xcell element in addition to the simple plots.

2.8.1 Chronology of Commands

First we give a short guideline how to setup hsolve:

1. First create all compartments with their channels.

2. Do a reset and check the simulation schedule with the showsched command. You will see that
all compartments and channels are scheduled for simulation.

3. Then create hsolve, configure hsolve by setting the appropriate fields (chanmode 4) and method
of integration, call SETUP, then do a ’'reset’.

4. Again check the simulation schedule with the showsched command. The compartments and
channels are removed from the simulation schedule. Instead, hsolve has been scheduled.

5. Messages for compartmental voltage can be created in two ways : before the SETUP messages can
be created coming from the compartments (the modeling elements), after SETUP, messages that
come from the hsolve element must be created with use of the findsolvefield command. We
will shortly show why the latter approach is not always possible.

We indicate points of interest with a marker of the form ’// point <n>’ such that we can refer to
it later on. Here is the complete script :

genesis > include ht_compartments.g

genesis > make_compartments

genesis > setclock 0 0.000010

genesis > readcell main.p /main -hsolve

genesis > setmethod main 11

genesis > setfield main chanmode 4

genesis > // point 1

genesis > call main SETUP

genesis > create xform /cell [200,350,300,300]

genesis > create xdraw /cell/draw [0,0,100%,100%]

genesis > setfield /cell/draw xmin -0.00005 xmax 0.00005 \
genesis > ymin -le-5 ymax 4e-5 \

genesis > zmin -le-5 zmax le-5

genesis > create xcell /cell/draw/xcell

genesis > setfield /cell/draw/xcell colmin -0.1 colmax 0.05 \
genesis > path /main/##[TYPE=compartment]

genesis > str element

genesis > foreach element ({ el /main/##[TYPE=compartment] })
genesis > addmsg /main /cell/draw/xcell \

genesis > COLOR {findsolvefield /main {element} Vm}
genesis > end

genesis > setfield /cell/draw/xcell \

genesis > nfield {countelementlist /main/##[TYPE=compartment]}
genesis > xshow /cell

genesis > reset

genesis > // point 2

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS 17

NOTE : The xcell element assumes that you have it setup the right messages with the path field
of the element. If you setup the messages manually as we do here, you must set the nfield field
with the number of messages going to the xcell element, otherwise it will not display anything.
The nfield field of xcell is not documented.

2.8.2 Setup of Experiments

Current Injection Assume that you want to apply injection of a current into the soma. Since the
compartment has a special (input) field to do this kind of experiment, hsolve has a corresponding
(input) field for this too. We can find this field with the findsolvefield command. Having a current
injection for halve a second and then switching it off can be done by adding the following code at point
2:

genesis > // point 2

genesis > setfield /main {findsolvefield /main /main/soma inject} le-9
genesis > step 0.5 -time

genesis > setfield /main {findsolvefield /main /main/soma inject} 0
genesis > step 0.5 -time

Input to Synaptic Channels We want to set the neurotransmitter concentration that influences
the synaptic channels for a short period of time, say just a single time step. The neurotransmitter
concentration is stored in the activation field of the synaptic channels. However, if you try to find
that field, hsolve gives an error message :

genesis > echo {findsolvefield /main /main/main/basket activation}
** Error — unknown or unavailable field activation for basket.

This means that we cannot set that field during simulation, so we have to use messages created
before the SETUP call instead. A small trick is to set the coordinates of neutral elements, then have
messages transport the coordinate values to the activation field of the synaptic channels.

genesis > // point 1

genesis > create neutral /messengers

genesis > create neutral /messengers/nl

genesis > setfield /messengers/nl x 0.0 y 0.0 z 0.0

genesis > addmsg /messengers/nl /main/soma/basket ACTIVATION x

genesis > addmsg /messengers/nl /main/main[0-4]/basket ACTIVATION y
>

genesis > addmsg /messengers/nl /main/main[5-8]/basket ACTIVATION z

To activate the messages, we set the coordinate values for the neutral element for a single step
of the simulation. Hsolve automatically fetches the new values and uses them to calculate the new
conductance of the synaptic channel :

// point 2

step 0.2 -time

genesis > setfield /messengers/nl x 1.0 y 1.0 z 1.0
genesis > step

genesis >
>
>
>
genesis > setfield /messengers/nl x 0.0 y 0.0 z 0.0
>
>
>
>
>

genesis

genesis > step 0.2 -time

genesis > setfield /messengers/nl x 1.0 y 1.0 z 1.0
genesis > step

genesis > setfield /messengers/nl x 0.0 y 0.0 z 0.0
genesis > step 0.2 -time

NOTE : Of course hsolve does store the activation field, but in an optimized and recalculated
form. That is why it is not accessible with findsolvefield.

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS

NOTE : The Purkinje cell tutorial that comes with the Genesis source code contains a Purkinje
cell model with 4000 compartments that is simulated with hsolve[3]. Besides being a good example
of graphical output using hsolve, various ’experiments’ are implemented with the findsolvefield
command and the script_out object. If you want to dig into the code of the tutorial, the gctrace
and gftrace commands will prove useful.

18

CHAPTER 2. INTRODUCING HSOLVE FOR SINGLE CELLS

axial .

Compartment

Ed
o
:

Compartment
. raxial

channel
abejjon
channel
abeyon
channel
- abejjon
channel
- abejjon
channel
abejjon
channel
‘ abejjon

CH1 CH2 CH3 CH1 CH2

S

CH3

%

Hsolve : chanmode 0

axial .
Compartment Compartment
. raxial

CH1 CH2 CH3 CH1 CH2 CH3
g Las Lae
G

channel
abejjon
channel
abejjon
channel
« obejon|
channel
« abejon|
channel
abejjon
channel
- abejjon

Hsolve : chanmode 4
axial .
Compartment Compartment
<$

s s 5 s 5 s

5 2 2 2 2 2
|8 B 8 o’ o8 |8
2 2 2 g 2 2
CH1 CH2 CH3 CH1 CH2 CH3

Figure 2.1: Normally all Genesis elements in the element hierarchy — represented by the boxes in
these pictures — do their own computations (as indicated by the toot-wheels). When using hsolve,
computations of some or all of the elements in the model are done by hsolve, the original elements
for which hsolve does the computations only serve as a model description. In chanmode 0 (middle

panel) only compartments are computed by hsolve, while in chanmode 4 (lower panel) all elements
are computed by hsolve.

19

Chapter 3

Networks of Cells

3.1 Introduction

To simulate networks of connected cells, you could use hsolve as for simulating single cells. This
means that you have to create, setup and reset an hsolve element for every cell in the network. As
a consequence every hsolve element will have its private internal data structures, something that is
memory expensive in the higher chanmodes. To improve this situation, hsolve actively supports the
simulation of network simulations for networks with cells of the same type.

3.2 The DUPLICATE Action

To understand how to use hsolve for network simulations, remember for a moment how hsolve
examines the model it has to compute :

1. First during the SETUP action, hsolve examines the structure of the model and stores parameters
that describe it.

2. Second during a RESET, hsolve stores recalculated quantitative values in its private data struc-
tures.

With the DUPLICATE action it is possible to have multiple hsolve elements share the structure be-
tween identical neurons (neurons with an identical morphology, number of channels etc. The descriptive
quantitative aspects like reversal potential of channels may differ between these neurons).

To use hsolve for a population of resembling cells, you have to :
1. create and use SETUP to have hsolve examine the structure of the first cell.

2. create an hsolve element for every other cell in the population. This is not done with a regular
create command, but by calling the DUPLICATE action on the solver element for the first cell,
to have the new hsolve element share some of its internal data structures with the first hsolve
element. The syntax for the DUPLICATE action is:

genesis > call hsolvel DUPLICATE hsolve2 <path>

The <path> argument points to the compartments to be computed by the hsolve about to be
created and is (as always) a wild card specification that will be expanded relative to the hsolve
element.

3. call the RESET action on every hsolve element. This is most conveniently done with the reset
command.

NOTE : Never use the -hsolve option for readcell for cells that you want to duplicate. The
layout of the cells when using e.g. createmap assumes that all cells reside in neutral elements.
Such commands do not take special precautions when copying hsolve elements. The net result is
that you are not allowed to use the DUPLICATE action on hsolve elements created by the -hsolve
option of the readcell.

20

CHAPTER 3. NETWORKS OF CELLS 21

Let us examine an example :

genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis
genesis

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

include ht_granule_compartments.g
granule_make_compartments
setclock 0 0.000010
readcell granule.p /granule
createmap \
/granule /granule_cell_layer 5 1 \
—delta le-4 7.5e-5 -origin 5e-5 3.75e-5
ce /granule_cell_layer/granule[0]
create hsolve solver
setmethod granule 11
setfield solver chanmode 4 path "../[][TYPE=compartment]"
call solver SETUP
int i
for (i=1; i<5;i=1i+1)
call solver DUPLICATE \
/granule_cell_layer/granule[{i}]/solver \
. ./##[] [TYPE=compartment]
end
reset

As already noted, we do not use the -hsolve option for readcell here. After creating a grid of
cells, we manually create an hsolve element for the first cell in the grid and initialize it with SETUP
after proper configuration. Then comes a small for-loop that walks over the remaining cells of the
population and calls the DUPLICATE action for each cell. Note that the wild card specification that
points to the compartments to be computed is — as usual — relative to the hsolve element that will do
the wild card expansion, it is not relative the current working element or the original hsolve element
(that was initialized with SETUP). At this point we have a correctly initialized set of hsolve elements
regarding structure. Finally we still have to initialize all data structures with the computed values,
that is done with the 'reset’ command.

Although almost complete, there is still one caveat in this example that becomes clear if we inspect
the simulation schedule :

genesis > showsched

WORKING SIMULATION SCHEDULE

[1] Simulate /##[CLASS=segment] -action INIT

[2] Simulate /##[CLASS=segment] [CLASS!=membrane] [CLASS!=gate] \
[CLASS!=concentration] [CLASS!=concbuffer] -action PROCESS

[3] Simulate /##[CLASS=membrane] -action PROCESS

[4] Simulate /##[CLASS=hsolver] -action PROCESS

[56] Simulate /##[CLASS=concentration] —-action PROCESS

As apparent from the simulation schedule, some compartment(s) and channel(s) are still scheduled
to compute their internal state. Requesting a list of elements at the top of the element hierarchy makes

all clear :

genesis > le /

*proto
output

x1ibrary/

granule/

granule_cell_layer/

The original cell that was used to create the grid of cells in the population is still scheduled for
simulation (indicated by the lacking asterisk ’*’). Disabling it, solves the situation, only hsolve will

CHAPTER 3. NETWORKS OF CELLS 22

be scheduled for computations. It is necessary to do reset again such that Genesis recomputes the
simulation schedule. If the disable command is put at an appropriate place in the script, only one
reset is necessary of course.

genesis > disable /granule
0K

genesis > reset

genesis > le /

*proto

output

x1ibrary/

xgranule/
granule_cell_layer/

genesis > showsched
WORKING SIMULATION SCHEDULE
[1] Simulate /##[CLASS=hsolver] —action PROCESS

NOTE : The way to setup input or output for hsolve that has been created with a DUPLICATE is not
the same as for hsolve elements that have been created with SETUP. Only with the findsolvefield
command you will be able to access computed fields. Messages created before the DUPLICATE action
are ignored. (also take a look at the exercises for networks)

Exercises

1. If you use the -hsolve option of readcell, why does it make good sense not to call the SETUP
action after the readcell command has been completed. This means that you always have to
manually call the SETUP action to get everything work.

2. About the demo for interfacing to an efield element :

(a) How can you be sure that indeed two plots have been created ?
(b) Add a plot for the conductance of a channel.

(¢) Add an xcell display. You should know that this can be done in two different ways (which
ones 7). Implement these two methods and try to figure out if there is a performance
difference.

3. Examine the Purkinje cell tutorial that comes with the Genesis distribution. Try to understand
the different experiments that can be done with the tutorial.

(a) The tutorial supports two different protocols for current injection : (1) a constant current
and (2) a pulsed current via the use of the pulsegen object. Is this invisible to hsolve ?
Why ? It is possible to switch the current on or off during the simulation. How is that made
possible ?

(b) Find and examine the code to update the frequency field of synaptic channels (you have
to know the actions HSAVE and HRESTORE, but the comments in the code clarify what they
are supposed to do). How efficient or inefficient is this implementation ? Can this be imple-
mented with a script_out element ? Would that make any difference ?

(¢) It is possible to synchronously activate synaptic channels of the Purkinje cell (via the
synapses of the parallel fibers). Examine how the code is organized to implement this
functionality.

(d) The climbing fiber gives excitatory input to the Purkinje cell at different locations, with
various time delays. Examine the implementation of the time delay.

(e) The code that links the membrane potential of the excitatory currents with the xcell element
uses findsolvefield. Examine the Genesis element hierarchy to locate the elements that
are the original sources for the messages (not hsolve). What is peculiar in this use of
findsolvefield?

4. Improve the example for the DUPLICATE action :

(a) Create a second population, let’s say 10 cells. You could use the multi-compartmental
cell that is used for the single cell part of this tutorial. Create connections between the
populations (when do you have to create these connections and how does this restriction
propagate to your Genesis script 7). Create hsolve elements for both populations.

(b) Add input to the network with a population of randomspike elements.

(c) Add output to the network: plot some of the membrane potentials (use findsolvefield).

NOTE : The examples as well as the exercises originate from scripts that have been used for
scientific research. These scripts are available from http://www.bbf.uia.ac.be/

23

Part 11

Some Useful Tricks with Hsolve

24

Chapter 4

Beyond Simple Use

4.1 Advanced Actions

In the higher chanmodes, the modeling elements describe properties of the model that hsolve has
to compute. If you change one or more properties — field values in the modeling elements — hsolve
has to be notified of the change. This defines a data stream from the modeling elements to hsolve’s
internal data structures.

On the other hand, sometimes you will be interested in the many variables computed by hsolve.
In that case hsolve is able to store all the computed variables back in the appropriate fields of the
modeling elements. This defines a data stream from hsolve’s internal data structures to the modeling
elements.

These two data streams are not physically available, but parts of them are implemented via the
actions explained in the following sections.

4.1.1 Setting/Getting Fields for Individual Elements

Sometimes it might be useful to set a field or property of a modeling element that is not accessible
via findsolvefield. Hsolve allows you to do this with two actions that are called with the following
syntax :

genesis > call solver <action> <path>

The solver is a path leading to an hsolve element. The path should be replaced with the pathname
leading to the element for which you are modifying a property or field value. It is expressed relative
to the current working element (not relative to the hsolve element as the path field of hsolve). The
action is one of the following two :

1. HPUT : copies field values from a modeling element to hsolve’s internal data structures. This
action will only copy descriptive values to the hsolve element.

2. HGET : copies field values from hsolve’s internal data structures to the fields of a modeling element.
This action will only copy computed values to the modeling element.

Since these actions only work after a SETUP and RESET, it is important that your modifications to
the modeling elements do not change the structure of the model. You must not remove or add any
messages between the elements, you must not add or change tables from tabulated channels etc.

NOTE : Sometimes these actions may have side-effects : for example in chanmode 3, the HGET
action will initialize the conductance (Gk) and the current (Ik) of the original modeling element to
zero if it is a channel like element. These values are not available in hsolve’s internal data structures
in chanmode 3. However, in chanmode 4 these computed variables are available in hsolve’s internal
data structures and will be filled in in the fields of the modeling element.

NOTE : In combination with the script_out object, the HPUT and HGET actions give you yet a
third way to interface hsolve to other elements.

25

CHAPTER 4. BEYOND SIMPLE USE 26

4.1.2 Setting all Computed Fields at the Same Time

If it is necessary to set all the fields at the same time, hsolve provides you the following two actions,
which are automated versions of the two previous ones :

1. HSAVE: copies all computed field values from hsolve’s internal data structures to the field values
of the modeling elements.

2. HRESTORE : copies all descriptive field values from the modeling elements to hsolve’s internal data
structures.

Both commands are called with the following syntax :
genesis > call solwer [HSAVE | HRESTORE]
Again the solver is a path leading to an hsolve element.

NOTE : The HRESTORE action is part of the the RESET action. Besides calling the HRESTORE action,
the RESET action also initializes values like membrane potential, channel activation etc.

4.2 Advanced Fields

Some fields have a special meaning for hsolve. We already encountered some of them. Here we
review the ones we already encountered, and we introduce some new ones.

4.2.1 calcmode

As already mentioned in a previous section (section 2.3, page 12), this field corresponds to the
calc_mode field of tabulated elements. It is shared between all tables that go in hsolve’s internal data
structures.

4.2.2 storemode

Sometimes you will be interested in the contribution of a single channel type to the behavior of
a complex multi-compartmental model, say you are interested in the overall Ca®" influx. Computing
this variable would imply getting the current or conductance from each channel of the specified type in
each compartment and then adding them up. From viewpoint of single elements that act as a model
description for hsolve, such values are simply not accessible, nevertheless since hsolve has access to
all computed variables in chanmode 4 and 5, it will compute such an integrated current or conductance
when the storemode field is set. You will not be able to find these variables with the findsolvefield
command, but with a small trick, hsolve will report in your terminal where to find these variables.

These variables are defined as the summation of the field Ik or Gk for each channel of the same
type in the model. For this to work correctly, each channel of the same type must have the same name
in each compartment. Then, before the SETUP action, the storemode field should be set to one of the
following values :

0: the default value, no sums are stored.
1: total currents are stored.

2: total conductances are stored.

Afterwards, you use hsolve as usual (set other fields, call SETUP etc.).

Now if you want hsolve to report where it will store the totals of currents or conductances for
each channel type, set the silent flag of Genesis to a negative value, call the RESET action on the
hsolve element and reset the silent flag to its original value. Hsolve will then report where to find the
computed fields for each channel type (or better for each unique channel name that is encountered in
the model) :

CHAPTER 4. BEYOND SIMPLE USE 27

genesis > silent -1

genesis > call solver RESET
storing leak in itotall[O0]
storing CaP in itotal[1]
storing KC in itotal[2]
storing K2 in itotall[3]
storing Ca_pool in itotal[4]
storing Ca_nernst in itotal[5]
storing stellate in itotall[6]
storing Kdr in itotall7]
storing NaF in itotall[8]
transferring element field values into solve arrays
genesis > silent 0

Now you can use the getfield and showfield commands to examine the values of the variables.

genesis > step

genesis > showfield solve itotall1]

[/Purkinje/solve]

itotall3] = 8.777549691e-10

The storemode field does not influence any other functionality of hsolve. So you are still able to
use findsolvefield to inspect other computed values of interest.

4.2.3 no_elminfo

This field has its origins in the DUPLICATE action : if this field is set, hsolve does not store some
information about the model because it is already present in the hsolve element that was duplicated.
A side effect of this is that this field can also be used without using DUPLICATE: this saves some
memory, but the command findsolvefield and the actions HPUT and HGET fail to work. When you
create the right incoming and outgoing messages before the SETUP, this is no problem. Nevertheless
the no_elminfo field was used in times where computers were shipped with small memories, but in the
current era it has become obsolete.

4.2.4 outclock

This is the clock number used to give output to external objects for chanmodes 3,4,5. This allows
have output every N time steps, which can speed up your simulation. Note that this affects all outgoing
messages that were created before the SETUP of hsolve to all elements that are not computed by hsolve.

4.2.5 Other Fields

Some read-only fields can be of interest while debugging your simulations. These fields are availabe
after a successful SETUP, but must never be changed.

1. symflag: the symflag can be inspected to see if hsolve is computing symmetric compartments.
2. ncompts: the number of compartments that are in the model that hsolve is computing.

3. nchildren: this array contains the number of intracellular mechanisms in the model.
4

. nelm names : Element names can be shared for different elements with the same name. This field
is a count on the number of different element names in the model.

o

ntab: The number of distinctive tables in the model.

6. dt : The value of the simulation clock that hsolve uses to do its computations.

NOTE : The comptmode field is not used anymore, but it is still there for backward compatibility.
The Genesis documentation has not been updated yet.

Exercises

1. In the Purkinje cell tutorial, plot the overall contribution of one of the Ca®* channels in a graph.
Add code that allows to inspect the overall Ca®" influx in the cell (the Ca®" currents are modeled
with two separate channels).

2. To randomize the properties of a population before a simulation, I once encountered code a bit
like the following (I summarized it to the pieces of interest) :

echo "Randomizing granule cells"
for (i = {number_granule_cells}; i > 0; i =i - 1)
pushe /granule_cell_layer/Granule[{i-1}]/soma
initvm = {rand {Vm_init_1b} {Vm_init_ubl}}
setfield . initVm {initvm}
setfield . Vm {initvm}
setfield . Em {rand {Granule_E_leak_1b} {Granule_E_leak_ubl}}
call /granule_cell_layer/Granule[{i-1}]/solve \
HPUT /granule_cell_layer/Granule[{i-1}]/soma
pope
pushe /granule_cell_layer/Granule[{i-1}]/soma/mf_AMPA
setfield . \
gmax {{getfield . gmax}
* (1 + {weight_distribution} * {rand -1 1})}
call /granule_cell_layer/Granule[{i-1}]/solve HPUT .
pope
end

The man that sent me the code complained that hsolve is indeed very fast, but the setup of
hsolve takes ages. What is redundant in the code above ? Why ? Is this causing a bottleneck
during the simulation ?

28

Part 111

Intrinsics and Technicalities

29

Chapter 5

Synchan - hsolve coordination

5.1 A word about events

In the documentation you will find that hsolve is able to ’take over’ synaptic channels. This is
correct regarding the numerical computations that the synaptic channels perform. However, besides
these numerical computations, the synaptic channels also perform event buffering. Event buffering is
the management of synaptic events during simulation time : (1) receiving incoming events, (2) sorting
events in order of firing time and (3) scheduling events by adding the weight of the firing synapse
to the activation value of the channel at the appropriate simulated time step (the activation is the
neuro-transmitter concentration in the synaptic cleft during a single time step).

5.2 Implementation

Hsolve never handles any event. To have synchans do the event buffering and hsolve do the
numerical computations, a special coordination mechanism that is part of both elements has been
implemented. The next sections explain what happens when a synchan has been taken over by hsolve.

5.2.1 Synchan event handling

For every synaptic channel hsolve keeps an internal counter that tracks when the next event on
that channel arrives. If the counter is zero, hsolve puts a zero in the activation field of the channel.
Then it asks the channel to calculate the activation for all events that should be fired during the next
time step by calling the HPROCESS action on the channel element. The channel then computes the
activation value for all firing events by summing the weights of the synapses at which the events arrive,
but without doing any numerical computations for the conductance (i.e. the computations that are
part of a normal PROCESS cycle for a synaptic channel). The result is put in the activation field of
the synaptic channel. Hsolve then fetches the value of the activation field and incorporates it in
its own computations to compute the conductance of the channel. The internal counter that hsolve
maintains for the channel, is set to the number of time steps before the next synaptic event arrives on
that channel by inspecting the (sorted) list of pending events of the channel.

NOTE : The Genesis scheduler never schedules the synaptic channels taken over by an hsolve
element. It is hsolve that calls the HPROCESS action on the appropriate channel when needed.
These channels are therefore not represented in the simulation schedule.

5.2.2 New Incoming Events

When new events arrive on a synaptic channel that has been taken over by hsolve, there is a
possibility that the event must be scheduled before any other pending event i.e. the new event is the
first one in the sorted list of events. As a consequence the internal counter that tracks the occurrence
of the next synaptic event for that channel must be updated. A synaptic channel receiving a new
first event, notifies hsolve of this situation by calling the hsolve element with an HSEVENT action.
The arguments to this action describe the synaptic channel at which the event arrives with a unique
identifier and the time when the event will be scheduled. Hsolve uses this information to update the

30

CHAPTER 5. SYNCHAN - HSOLVE COORDINATION 31

internal counter for the synaptic channel. The unique identifier is determined by hsolve during SETUP
time and can be found in the solve_index field of the synaptic channel. The hsolve element that has
taken over the synaptic channel is found in the hsolve field of the channel.

NOTE : For the outgoing spike events hsolve uses a message loop on the messages of the spikegen
element that produces the spikes. There is nothing really fancy about this except for the fact that
hsolve uses memory that is supposed to be private to the spikegen element. This way the events
arrive automatically at the wright synchan element, and that element will in turn notify an hsolve
element if needed by means of an HSEVENT action. This also guarantees that there is no interference

with pgenesis.

Chapter 6

Byte-codes

We already talked about the compilation into byte-code when using the higher chanmodes. The
aim of this chapter is to give a rough idea about what we mean by that. Although the topics discussed
here are certainly not complete, you should get some feeling with the internal workings of hsolve.

6.1 Compilation

In computer science compilation means transforming one language into another. The first reason
to introduce compilers in computer science was expressiveness: people implement the solution to a
problem in a computer language in which they are able to express themselves without difficulty. Then
this solution was compiled into a language that is understandable for a computer : a machine language.

The same reasoning can be applied to (neuronal) modeling : you express the model with something
you feel comfortable with (e.g. the modeling elements of Genesis). Then to simulate the model, it
must be compiled into a language that is understandable for a machine and efficient to solve numerical
calculations. This language is the byte-code that hsolve deals with. To put it in other words, the
byte-codes are tailored to encode the numerical calculations required to solve the equations that occur
in a neuronal model. The compilation step consists of two phases: in the first phase an intermediary
representation is built and optimized for structure. In the second phase the optimized intermediary
representation is used to generate the actual byte-codes. The generated byte-codes are again optimized
such that e.g. redundant computations are removed (see figure 6.1).

After a successful SETUP and RESET, hsolve has examined the full model and has stored all the
byte-codes necessary to compute the behavior of the model. But besides the byte-codes that encode
the model, hsolve also stores the results of the calculations and descriptive values necessary to do the
calculations. For technical reasons hsolve stores the operators (the byte-codes) separately from the
operands (the results of the calculations and descriptive values).

6.1.1 Data Model

As already explained in the chapter on the numerical background, hsolve solves the equations in
the model on a staggered time grid (see section 1.2.1, page 5). The decoupling of the equations of
intracellular mechanisms and conductances from the cable equation propagates to the design of the
implementation for the emulation of the byte-code. Basically hsolve can be split into two almost
separate parts : one part for the intracellular mechanisms and one part for the cable equations. These
two parts have their own byte-code engine. Since hsolve stores the byte-code separately from the
result values, each byte-code engine maintains two arrays (see figure 6.1). So for conductance equations
and cable equations, hsolve maintains four arrays in total as follows :

1. For cable equations :

(a) The array that contains the byte-code is called the funcs array. It uses the conductance
values to compute membrane potentials on a future time point.

(b) The array that contains the computed values is partitioned into three distinct subparts :
ravals, results and vm.

2. For conductance equations :

32

CHAPTER 6. BYTE-CODES 33

(a) The array that contains the byte-code is called the ops array. It uses the membrane potentials
for membrane potential dependent conductances.

(b) The array that contains the computed values is called the chip array.

€

@

£

3 Intermediate OPs

g representation

o for channels

A / \ RAVALS
= 23
g V CHIP RESULTS
chay

Intermediate
representation
for compartments

nel
voltage]
gnnel

voltage

Compartment

I voltage

Phase 1: Structural encoding and optimization

-
-

Y

Phase 2 : Byte code generation and optimization

A
|

Compilation
Figure 6.1: Byte code compilation phases

The advantages of this design are:

1. Optimizations can be implemented that are not possible at the modeling level.

2. Because of a high cache use, you get extra performance (cache misses are identified as a bottleneck
in some application areas).

3. Easy to emulate a single byte code.
NOTE : We did not consider diffusion or concentration elements till now. If these elements would

be incorporated into the discussion we would have to say that hsolve can be split into three separate
parts : also the diffusion and concentration elements have their own byte code engine.

6.2 Hsolve as a Virtual Machine

In this section we shortly discuss what the byte-codes that hsolve internally uses, look like. The
examples we show are taken from the Purkinje cell tutorial that comes with the Genesis distribution([3].

CHAPTER 6. BYTE-CODES 34

6.2.1 Solution of The Cable Equation.

The solution of the matrix that emerges from the spatial discretization of the cable equation is done
by looping over the byte-code in an array called funcs. The number of entries in this array is given by
the field nfuncs:

genesis > showfield solve nfuncs
[/Purkinje/solve]
nfuncs = 25810

The funcs array contains the actual code to be executed and also encodes the structure of the
matrix (which corresponds to the morphology of the neuron). Remember that this matrix is inverted
in two phases that are known as forward elimination and backward substitution. If we disassemble a
small part of the funcs array, we get something like the following :

genesis > printfuncs solve 0 20

00000 :: O 0 FOBA_ELIM 0
00002 :: 1 SET_DIAG
00003 :: O 2 FOBA_ELIM 2
00005 :: 2 SKIP_DIAG
00006 :: O 6 FOBA_ELIM 6
00008 :: 1 SET_DIAG
00009 :: O 4 FOBA_ELIM 4
00011 :: O 3 FOBA_ELIM 3
00013 :: 2 SKIP_DIAG
00014 :: O 12 FOBA_ELIM 12
00016 :: 1 SET_DIAG
00017 :: O 10 FOBA_ELIM 10
00019 :: O 14 FOBA_ELIM 14

The first FOBA_ELIM opcode tells that the coefficient at offset 0 should be eliminated from the
matrix. Since we are at the start of the funcs array, hsolve knows that it is in the process of forward
elimination (the opcode FOBA_ELIM encodes forward elimination as well as backward substitution).

Second the SET_DIAG opcode calculates a new value for the coeflicient on the diagonal of the matrix.

The SKIP_DIAG opcode calculates a new value for the coefficient on the diagonal of the matrix, but
then skips on to the next row in the matrix. This means that we are dealing with a tip of a dendrite.
At positions 9 and 11 we encounter two consecutive elimination steps. This a witness of a branch point
in the morphology of the neuron.

Note that the coefficients to be eliminated, are found in the ravals and results arrays. When
walking over the funcs array, hsolve also automatically sweeps through these two data arrays.

The separation between forward elimination and backward substitution is done with a FINISH
opcode :

genesis > printfuncs solve 12164 12171

12164 :: 1 SET_DIAG

12165 :: 0 9092 FOBA_ELIM 9092
12167 :: 7 FINISH

12168 :: 0 9094 FOBA_ELIM 9094
12170 :: 6 CALC_RESULTS
12171 :: 0 9092 FOBA_ELIM 9092

After the FINISH opcode, hsolve starts the backward substitution cycle (so from then on the
FOBA_ELIM opcode encodes a backward substitution operation. Finally the CALC_RESULTS operation
tells that all coeflicients from the current row have been eliminated and that the final result for that
row can be calculated. There are yet some other opcodes that are used for symmetric compartments.
These are not discussed.

The emulation of this byte-code is done in the source file hines_solve.c.

CHAPTER 6. BYTE-CODES 35

6.2.2 Solution of Conductance Equations.

The solution of conductance equations is done by looping over the byte-code in an array called ops.
The number of entries in this array can be found by inspecting the field nops:

genesis > showfield solve nops
[/Purkinje/solve]
nops = 127132

The byte-code in the ops array walks over the conductance equations for all compartments. For the
purposes of efficiency, the conductance equations are grouped per compartment and these groups are
put in the same order as the compartments in the funcs array. Every time a new group is encountered,
the next membrane potential is fetched from the vm array. The groups are separated with COMPT_OP
operations (and sometimes other operations with a resembling name). Disassembling the opcodes gives
something like the following output :

genesis > printops solve 0 25

00000 :: 101 FCOMPT_OP

00001 :: 3001 CHAN_EK_0OP

00002 :: 4101 o -1 1 0 SYN3_0P o -1 1 0
00007 :: 100 COMPT_OP

00008 :: 100 COMPT_OP

00009 :: 5100 NEWVOLT_OP

00010 :: 3001 CHAN_EK_OP

00011 :: 4001 4 1 IPOL1V_0OP 4 1
00014 :: 3200 ADD_CURR_OP

00015 :: 1000 0 CONC_VAL_OP 0
00017 :: 5110 NEWCONC1_0P

00018 :: 3000 CHAN_OP

00019 :: 4001 6 1 IPOL1V_0OP 6 1
00022 :: 4002 0 2 IPOL1C_OP 0 2
00025 :: 3200 ADD_CURR_OP

The first opcode FCOMPT_OP simply loads the first membrane potential from the vm array. Then we
encounter a compartment that contains a single synaptic channel (SYN3_0P opcode). Then we encounter
two consecutive COMPT_OP opcodes, indicating the presence of a passive compartment : if you inspect
the Purkinje cell tutorial, you see that there are lots of spines consisting of a spine head that contains
a synaptic channel and a spine neck that is a passive compartment. The way hines numbering is
implemented in hsolve forces the computations for the dendritic tips to be done first. In the Purkinje
cell tutorial all dendritic tips are spines which explains why we encounter a compartment with a single
synaptic channel followed by a passive compartment.

Next we encounter a NEWVOLT_OP. This operation loads a pointer to a table that contains an entry
for each tabulated channel type in the model and that corresponds to the membrane potential of the
current compartment. The CHAN_EK_0OP loads the maximal conductance and the reversal potential (that
come from the current entries in the chip array). Then the IPOL1V_0OP computes a gate factor from
a one-dimensional table (the table type is 4, the exponent is 1). The next operation, ADD_CURR_OP,
computes the current contribution for the channel. After this we see opcodes encoding an analog
scenario for a concentration dependent conductance.

The emulation of this byte-code is done in the source file hines_chip.c.

NOTE : The printfuncs and printops commands are not available in release 2.2 of Genesis.

Bibliography

[1] BOrRG-GRAHAM, L. J. Additional efficient computation of branched nerve equations :adaptive time
step and ideal voltage clamp. Journal of Computational Neuroscience 8 (2000), 209-226.

[2] BOWER, J. M., AND BEEMAN, D., Eds. The Book of GENESIS, second ed. Springer-Verlag, 1998.

[3] CorNELIS, H., AND DESCHUTTER, E. The purkinje cell tutorial. Available from the Genesis
source code distribution. http://www.genesis-sim.org, May 2002.

[4] DESCHUTTER, E., AND BEEMAN, D. The Book of GENESIS, second ed. Springer-Verlag, 1998,
ch. 22. Speeding up large simulations.

[5] DESCHUTTER, E., AND BOWER, J. Simulated responses of cerebellar purkinje cells are independent
of the dentritic location of granule cell synaptic inputs. Proc. Natl. Acad. Sci. USA 91 (1994), 4736—
4740.

[6] GERALD, C. F., AND WHEATLEY, P. O. Applied Numerical Analysis, fifth ed. Addison-Wesley
Publishing Company, 1999. Year ?

[7] HiNEs, M. Efficient computation of branched nerve equations. International Journal on Biomedical
Computing 15 (1984), 69-76.

[8] KocH, C., AND SEGEV, 1., Eds. Methods in Neuronal Modeling, From Ions to Networks, second ed.

Series on Computational Neuroscience. The MIT Press, Cambridge, Massachusetts, London, Eng-
land, 1998.

36

